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Summary — This paper will present the application 

of the Controller Area Network (CAN) for 

communication between the Motor Control 

Processor and the Europa Lander Motor Control 

Cards. The Europa Lander preproject team is  

concerned about lowering the estimated mass, 

volume, and power of the mission concept so that it 

could maximize its science return.  The motor 

controller uses multiple Motor Control Cards to 

control the 24 motors that will be operating in the 

extremes of the Europa environment.  The CAN bus 

was considered because of its multi-drop nature, low 

power interface, and simple communication 

protocol.  Beyond communication with the motor 

controller cards we also use the CAN bus interface 

to gather telemetry from the Power Conversion 

Card. Our system requires the collection of 

telemetry at a rate of 64Hz from the Power 

Conversion Card and all active motor controllers 

along with the sending of control packets and the 

receipt of control parameters at 512 Hz.   In the 

paper we will address the ability of the CAN bus to 

meet these requirements along with our Arduino 

based test system used to learn about the CAN bus 

standard and verify our analysis. 
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1. Introduction 
The Europa Lander is a proposed NASA astrobiology 

mission to Europa, an icy moon of Jupiter. If funded and 

developed as a Flagship mission, it would be launched 

as soon as 2025 to complement the studies by the 

Europa Clipper orbiter mission and perform analyses on 

site. The objectives of the mission concept are to search 

for biosignatures at the subsurface ≈10 cm, to 

characterize the composition of non-ice near-

subsurface material and determine the proximity of 

liquid water and recently erupted material near the 

lander's location. [1] 

The savings in the predicted mass and volume of the 

Europa Lander was the leading driver that led to a 

miniaturized motor controller currently planned for use 

on the mission. As illustrated in figure 1, the design 

consists of a computer card along with enough Motor 

Control Cards (MCC) necessary to control 12 motors. 

Each motor card can control up to three motors. Only 

one motor can run at a time per card. Those Motor 

Control Cards along with the Power Conversion Card 

(PCC) communicate to Motor Control Processor (MCP) 

by means of the CAN bus interface. [2] 

  

Figure 1: Europa Lander Motor Controller  
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2. Background of CAN bus 
A Controller Area Network (CAN) bus is a robust bus 

standard designed to allow microcontrollers and 

devices to communicate with each other's applications 

without a host computer. The CAN bus was originally 

designed for the automotive industry. The CAN bus has 

been used in various fields of industrial automation, 

marine, medical equipment, industrial equipment, and 

the aerospace industry. [3] The CAN bus 

communication protocol is widely recognized for its 

high performance and reliability and has been used in 

space flight applications. The benefits of CAN bus are 

speed, flexibility, and reliability. The CAN bus offers 

signal transfer rates up to 1 Mbps with a cable length of 

up to 40m. The CAN bus is a flexible standard because 

all nodes are equal; there is no master slave relationship. 

Also, as shown in figure 2, the CAN bus is reliable 

because CAN-Hi and CAN-Lo independently carry the 

data, the bus can still function if one signal line is 

broken, albeit with lower noise rejection. [4] 

 

 

Figure 2: Typical CAN bus Implementation [5] 

When data are transmitted over a CAN network no 

individual nodes are addressed. Instead the message is 

assigned an identifier which defines the message 

contents and the message priority. As shown in figure 

3, 4, and 5, a CAN message consists of an identifier 

field and the data field. The identifier field can have 11 

bits (Standard CAN) or 29 bits (Extended CAN). The 

data field can have a maximum of 8 bytes. Also, as 

shown in table 1, full length of the standard CAN 

message is 108 bits and extended CAN message is 128 

bits [6]. 

 

 

Figure 3: Standard CAN: 11-Bit Identifier (2.0A) [5] 

 

Figure 4: Extended CAN: 29-Bit Identifier (2.0B) [5] 

 

Figure 5: Standard CAN FD 11-Bit Identifier [7] 

Table 1: The Bit Fields of Standard CAN (2.0A) [5] 

 

On the CAN bus, all nodes are equal. There is no such 

thing as a bus master. This is made possible by the 

arbitration process during the idle time between 

messages. The priority of CAN bus message is based on 

the data and not where it came from.  

When there are two or more messages sent 

simultaneously, the arbitration process causes 

controllers with lower priority messages to enter the 

receiving mode. The unsung controllers wait until the 

end of the transmission intermission field before they 

attempt to communicate again. As soon as the bus is 

detected as idle, the CAN node sends an SOF (Start of 

Frame) bit by putting a dominant (low) level onto the 

bus. Every other node in the network, that did not 

request bus access, will immediately switch to a 

receiving mode. Then, the CAN controller sends the 

message ID. Then, all the CAN controller of all nodes 

will compare their output signal with the actual bus 

level at the end of each bit cycle. In the meantime, any 

node will lose the arbitration, in case it did send a 

recessive level (high) and detects a dominant (low) bus 

level. Consequently, all those nodes will switch into 

receiving mode. If the node has finished sending all 

arbitration bits (message ID plus RTR) without losing 

the bus arbitration, it will transmit the rest of the 

message. At this time all other CAN nodes in the 

network will have switched to receiving mode. 

There are three variants of the CAN bus standard that 

were evaluated; Standard CAN(2.0A), Extended 

CAN(2.0B) and the Standard CAN with Flexible Data 

(Standard CAN FD). [7] 
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Standard CAN(2.0A) has the following features: 

• 11-bit Identifier 

• Maximal CAN message payload can only 

reach 8 bytes, so full standard CAN message 

have total 108 bits. 

• Max speed 1Mb/s 

Extended CAN(2.0B) has the following features: 

• 29-bit Identifier 

• Maximal CAN message payload can only 

reach 8 bytes, so full extended CAN message 

have total 128 bits.  

• Max speed 1Mb/s 

Standard CAN FD has the following features: 

• 11-bit Identifier 

• The allowed message payloads of CAN FD 

are 1/2/3/4/5/6/7/8/12/16/20/24/32/48/64 bytes 

• CAN FD can improve the transmission bit-rate 

of CAN to as much as 12 Mbps 

This paper presents and evaluation of Standard 

CAN(2.0A).  The other buses present additional 

features and capabilities that will need to be evaluated 

in the future. 

3. Approach 
The SPI bus, SpaceWire, and CAN bus were all 

considered as a means of communication between our 

cards.  The CAN bus was considered for evaluation 

because of its multi-drop nature, low power interface, 

and simple communication protocol. This paper 

outlines this evaluation.   

The implementation of CAN bus interface into the 

Europa Lander Motor controller required us to map our 

telemetry and command requirements to the CAN bus 

protocol.  This required a specific protocol for the 

Motor Control Cards and another one for the Power 

Conversion Card.  We then did an analysis of the bus 

bandwidth required relative to the capability of the bus 

standard. 

To learn about the bus and to test out the mapping of 

our protocol to the CAN bus standard we used an 

Arduino based system for testing.  This enabled us to 

get experience about the bus and to verify our 

assumptions and models. 

4. MCC & PCC Data Requirements 
Before beginning our analysis, we started by first 

compiling the data requirements between the Motor 

Control Processor (MCP) and the Motor Control Cards 

(MCC). The data requirements can then be mapped onto 

the different standard CAN bus protocols. 

As illustrated in table 2, the MCCs are required to 

send back resolver position and velocity, motor phase 

currents to the MCP at a rate of 64hz. This data is used 

for telemetry collection. The MCCs need to send 

primary resolver position information along with 

position commands at a rate of 512hz. This data is used 

for control of the motors. The requirements list the data 

required to control 1 motor.    

Table 2: MCC Data Requirements (1 Card)  

 
As illustrated in table 3, the Power Conversion Card 

(PCC) is required to send back the status of the voltage 

and current for each of its output power rails.  In 

addition, it sends back status information on its 

assessment of its own health.  This data is required to 

be transferred back to the processor every 64 Hz. 

 

Table 3: Power Conversion Card Data Requirements 

 

5. CAN Bus 2.0A Implementation 

I. Adaptation to Standard: 
Based on the requirement for the Europa Lander, the 

motor controller uses multiple Motor Control Cards to 

Register Data Bits Hz Total Direction

Resolver Position 16 64 1024 To MCP

Resolver Odometry 16 64 1024 To MCP

Resolver Velocity 16 64 1024 To MCP

Current Phase A 16 64 1024 To MCP

Current Phase B 16 64 1024 To MCP

Current Phase C 16 64 1024 To MCP

PWM Duty Cycle 16 64 1024 To MCP

Kirchoff Current 16 64 1024 To MCP

Bridge Current 16 64 1024 To MCP

Compesation Current 16 64 1024 To MCP

Current Limit 16 64 1024 To MCC/FGPA

Current Command 16 512 8192 To MCC/FGPA

LVDT Postion 16 512 8192 To MCP

LVDT Odometry 16 512 8192 To MCP

LVDT Velocity 16 512 8192 To MCP

Motor 1 

or 

Motor 2

or

Motor 3

Register Data Bits Hz Total To

Temperature PRT 1 16 64 1024 to MCP

Temperature PRT 2 16 64 1024 to MCP

28V Power Monitor 16 64 1024 to MCP

15V Power Monitor 16 64 1024 to MCP

12V Power Monitor 16 64 1024 to MCP

5V Power Monitor 1 16 64 1024 to MCP

5V Power Monitor 2 16 64 1024 to MCP

5V Power Monitor 3 16 64 1024 to MCP

3.3V Power Monitor 16 64 1024 to MCP

2.5V Power Monitor 1 16 64 1024 to MCP

2.5V Power Monitor 2 16 64 1024 to MCP

Status/Fault Word 1 16 64 1024 to MCP

Status/Fault Word 2 16 64 1024 to MCP

TBD Word 1 16 64 1024 to MCP

Command Word 1 16 64 1024 to MCC/FPGA

Command Word 2 16 64 1024 to MCC/FPGA

Power 

Card
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control the 24 motors, and each Motor Control Card can 

control 3 motors. The CAN bus for our system operates 

at 1 MHz. As illustrated in figure 6, each of the cards 

connects to a common CAN bus network.   

 

 
Figure 6: Europa Lander Motor Controller CAN Bus 

Implementation 

 

In the CAN bus protocol, there is no concept of a 

master and a slave.  Nor is there a concept of a node 

address.  Instead, messages are given unique identifiers 

based upon message type.  The standard assigns priority 

to these messages based upon their type. 

For Europa Lander Motor Controller, as in other real 

time systems, we have a requirement to have consistent 

latency for our control, and telemetry communication.  

We typically achieve this by have remote nodes on a 

network send data only when requested by the 

processor.  This enables the processor to control the bus 

communication and predictable latencies throughout 

the system. 

Table 4: Motor Control Data Frame Definition 

 

  

For our initial mapping to CAN bus we control 

latencies by requiring the slave nodes to only send data 

when requested by the host through a POKE command.  

As illustrated in Table 4, the POKE command is a 

simple packet with no data in the data frame.  A 

different POKE command is created for each data type 

requested.  The assignment of priorities is done based 

upon the 11-bit ID field.  The first 5 bits define the type 

of data requested with the next 6 bits defining the node 

the data is requested from. 

The requested data is returned through standard CAN 

messages with bits allocated in the data frame for the 

group number, slave id and returned data.   

The Standard CAN data frame is limited to 8 bytes 

of data.  The telemetry from our motor controllers is 

many bytes more than this limitation.  We get around 

this by breaking the telemetry into 8-byte groups.  

When requested by the host through the POKE 

command the requested data is identified by the NODE 

ID of the slave along with the GROUP the data is 

requested from.  Table 5 shows the way how we 

separate all the telemetry into 10 groups data for motor 

card, and 5 groups data for power card. 

Table 5: Group Assignments 

 

II. Analysis transmission time 

Once we have completed the mapping of our 

required transmissions to the CAN bus protocol, 

the next step is to perform an analysis to show that 

our data requirements can be met. Based on the 

Motor Control Data Frame Definition in table 4, we 

can see that the full CAN message have 108 bits. 

Theoretically, the speed of CAN bus is 1Mb/s. 

Therefore, for sending a CAN message with 108 

bits, the bus takes 108 µs without any error, any 

delay and any latency. Hence, we have the detailed 

time for each CAN Message in table 6. 

 

 

Motor 
Card 5

Motor 
Card 6

Motor 
Card 7

Motor 
Card 8

Power 
Card

Motor 
Card 1

Motor 
Card 2

Motor 
Card 3

Motor 
Card 4

CPU 
Card

CAN-Hi

CAN-Lo

CAN2.0A 

Frame

Command Node ID

Number of Bits 5 6 8 8 8 8 8 8 8 8

Write Command 0x00 Slave-ID REG - ID 0x0F Null Null Null Null

Read Command 0x01 Slave-ID REG - ID Null Null Null Null Null Null Null

Response 

command of 

Power

0x02 Host-ID REG - ID Slave-ID Null Null Null Null

Response 

command of 

Motor Card

0x03 Host-ID REG - ID Slave-ID Null Null Null Null

Write 512Hz 0x04 Slave-ID 0x0F 0x0F

Poke 512Hz 0x05 Slave-ID

Response poke 

512Hz 
0x06 Host-ID Group 10 Slave-ID

Write 64Hz - to 

Motor Card
0x07 Slave-ID 0x0F 0x0F

Write 64Hz - to 

Power Card
0x08 Slave-ID 0x0F 0x0F

Poke 64Hz 0x09 Slave-ID

0x0A Host-ID Group A Slave-ID

0x0A Host-ID Group B Slave-ID

0x0A Host-ID Group C Slave-ID

0x0A Host-ID Group D Slave-ID

0x0A Host-ID Group E Slave-ID

0x0B Host-ID Group 1 Slave-ID

0x0B Host-ID Group 2 Slave-ID

0x0B Host-ID Group 3 Slave-ID

0x0B Host-ID Group 0 Slave-ID

16 bits data

16 bits data 16 bits data 16 bits data

Response poke 

64Hz data - 

Motor Card

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data

16 bits data

16 bits data 16 bits data 16 bits data

16 bits data 16 bits data 16 bits data

Response poke 

64Hz data - 

POWER CARD

16 bits data 16 bits data Null
16 bits data 16 bits data 16 bits data

16 bits data 16 bits data

16 bits data 16 bits data Null

Null Null Null Null

Null Null Null Null

16 bits data 16 bits data 16 bits data

Current limit Null

16 bits data

16 bits data

16 bits data

16 bits data Null Null

Null

ID (11 bits) Data Frame (0-8 bytes)

Group (Hex) Freq Signal (Hz) Decription From

0x00 64 6 bytes data of all motors

0x01 64 1st - 6 bytes data of Motor 1

0x02 64 2nd - 6 bytes data of Motor 1

0x03 64 3rd - 6 bytes data of Motor 1

0x04 64 1st - 6 bytes data of Motor 2

0x05 64 2nd - 6 bytes data of Motor 2

0x06 64 3rd - 6 bytes data of Motor 2

0x07 64 1st - 6 bytes data of Motor 3

0x08 64 2nd - 6 bytes data of Motor 3

0x09 64 3rd - 6 bytes data of Motor 3

0x0A 64 1st - 6 bytes data of Power Card

0x0B 64 2nd - 6 bytes data of Power Card

0x0C 64 3rd - 6 bytes data of Power Card

0x0D 64 4th - 6 bytes data of Power Card

0x0E 64 5th - 6 bytes data of Power Card

0x10 512 512 Hz Signal of Motor 1

0x11 512 513 Hz Signal of Motor 2

0x12 512 514 Hz Signal of Motor 3

 Motor 

Card 1

 Power 

Card

 Motor 

Card 1
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Table 6: Time Analysis – Closing loop with an MCC 

and a PCC at the rate of 64 Hz and 512 Hz 

 
As illustrated in table 6, for the system with an MCP, 

a PCC and an MCC, total bus traffic is nearly 300kbps. 

Therefore, we could easily see that with the speed 

1Mbps, the Standard CAN was too slow for our 

application with 8 MCCs running at the same time. 

However, in the future, we will be closing the loop 

within the FPGA for reducing the bandwidth 

requirements for the system, so our system only 

requires the collection of all telemetry at a rate of 64Hz. 

Therefore, the total bus traffic for system with 1 MCP 

+ 1 PCC + 8 MCC is: 

Total = Total a PCC response + Total an MCC 

 response * 8 + LVDT information 64Hz * 8 

= 36352 + 71,936*8 + 3*108*64*8   

= 777,728 bits/s 

Consequently, total free bandwidth is 22.23% (about 

23 kbps). Therefore, the standard CAN will work in this 

way.  For more detail, we can analysis with the time line 

of the bus traffic. We are using the major time frame is 

1 cycle of 64 Hz signal (15625 µs) and minor time 

frame is 1 cycle of 512 Hz signal (1953µs). In other 

words,  we know that 1 cycle of 64 Hz signal equal 8 

cycles of 512 Hz signal. In each minor time frame, it 

has all full telemetry for 1 motor card (3 motors). 

Therefore, in major time frame, it has total 8 minor time 

frames for 8 motor cards.  

 
Figure 7: First and Second of Minor Time Frame with 

8 MCCs at the rate of 64 Hz 

 
Figure 8: First and Second of Minor Time Frame with 

8 MCCs and PCC at the rate of 64 Hz  

As shown on the figure 7 and 8, we are using time 

frames for sending message, so for the synchronization 

between nodes and our initial mapping to CAN bus we 

control latencies by requiring the slave nodes to only 

send data when requested by the host through a POKE 

command. After the Power Card or Motor Card receive 

the Poke command from CPU card, they send back all 

the telemetry to the CPU card. Based on the 11-bits ID 

and 1-bytes group ID and 1-byte for nodes ID in 

standard CAN message, the CPU can know exactly 

where the CAN message come from and what telemetry 

data are contained in the message. Consequently, as 

shown in figure 7, all 8 parts of the 64 Hz cycle have 

25.9% free bus traffic, so the total free bandwidth is 

25.9% for 8 MCCs. Also, as shown in the figure 8, the 

first part of 64 Hz cycle has 18.9% free bus traffic; the 

second, third, fourth, or fifth part has 18.1% free bus 

traffic; the sixth, seventh, or eighth part has 25.9% free 

bus traffic; so, the total free bandwidth is about 21.13% 

for 8 MCCs and a PCC. 

CAN

2.0A
Group

Data 

(bits)

Overhead 

(bits) 

Full Msg

(bits)
Hz

Total 

(bits/s)

 Sum

(bits/s) 

Poke 0 44 44 64 2816

A 48 44 92 64 5888

B 64 44 108 64 6912

C 64 44 108 64 6912

D 64 44 108 64 6912

E 64 44 108 64 6912

Poke 0 44 44 64 2816

3 motors 0 64 44 108 64 6912

1 64 44 108 64 6912

2 64 44 108 64 6912

3 64 44 108 64 6912

4 64 44 108 64 6912

5 64 44 108 64 6912

6 64 44 108 64 6912

7 64 44 108 64 6912

8 64 44 108 64 6912

9 64 44 108 64 6912

Poke 0 44 44 512 22528

512Hz 

Signals 

Motor 1

10 64 44 108 512 55296

512Hz 

Signals 

Motor 2

11 64 44 108 512 55296

512Hz 

Signals 

Motor 3

12 64 44 108 512 55296

296,704   

1,000,000 

70.33%

Closing loop of an MCC and a PCC (bits/s)

Speed of CAN BUS (bits/s)

Percent Total Bandwidth Available

188,416    

      36,352 

      71,936 

Response 

Power 

Card

Response 

Motor 1

Response 

Motor 2

Response 

Motor 3

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 - 

Power Card

Response Poke 64 - 

Motor Card

NOTE

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 - 

Power Card

Response Poke 64 - 

Motor Card

NOTE

FreeMotor Card 2

all 3 Motor 1 Motor 2 Motor 3
LVDT 

Motor 1,2,3
25.9%

108

G0

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

108

G12

44

 1/8 Cycle of 64Hz - 2nd part

 (1/64Hz  = 15625 = 8*1953 micro second )

FreeMotor Card 1

108

G10

108

G11

108

G12

LVDT 

Motor 1,2,3
25.9%all 3 Motor 1 Motor 2 Motor 3

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

 1/8 Cycle of 64Hz  - 1st part

 (1/64Hz  = 15625 = 8*1953 micro second )

44

108

G9

108

G0

Power Card and

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 - 

Power Card

Response Poke 64 - 

Motor Card

NOTE

Power Card and

8 Motor Cards

with LVDT 64Hz

Poke 64

Response Poke 64 - 

Power Card

Response Poke 64 - 

Motor Card

NOTE
Group

B
18.1%

Motor Card 2 and Group B of Power Card

Motor 1 Motor 2 Motor 3
LVDT 

Motor 1,2,3

108

G12

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

Free

 1/8 Cycle of 64Hz - 2nd part

 (1/64Hz  = 15625 = 8*1953 micro second )

44 44

all 3

108

G0

108

G1

108

G2

Motor Card 1 and Group A of Power Card

108

44

92

Group

A
18.9%

Free

all 3 Motor 1 Motor 2 Motor 3
LVDT 

Motor 1,2,3

108

G0

108

G1

108

G2

108

G3

108

G4

108

G5

108

G6

108

G7

108

G8

108

G9

108

G10

108

G11

108

G12

 1/8 Cycle of 64Hz  - 1st part

 (1/64Hz  = 15625 = 8*1953 micro second )

44
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6. Arduino Simulation 

For simulating and demonstrating the real system 

response, the Arduino UNO microcontroller was 

chosen as the desired hardware platform.  The Arduino 

IDE using the Arduino complier served as our software 

development environment. Both Arduino UNO and 

Arduino IDE are open source and freely with no 

proprietary intellectual property costs. As shown in 

figure 9, the Arduino UNO was interfaced with the 

Arduino Controller Area Network Bus (CAN bus) 

shield which is also open hardware, and was interfaced 

with TFT Touch Screen shield for controlling and 

monitoring all the testing data. [8]  

 
Figure 9: Wiring Diagram of Arduino is connected 

with CAN bus Shield and TFT Touch Screen Shield. 

As shown in the figure 10, one Arduino simulated the 

computer card. The other one simulated the power 

card’s microcontroller. The computer card has two 

modes of operation: writing data to power card node 

and reading data from power card node. 

• Writing command: The computer card generates 

data, displays it on the screen and sends it to the 

power card by CAN 2.0A message. Then, the 

power card displays the data on the screen 

• Reading Command: The computer card sends the 

read request to the power card by CAN 2.0A 

message. The power card generates the data and 

displays on screen. Then, it sends back the data to 

the computer card by CAN 2.0A messages. The 

computer card receives the data and displays on the 

screen. 

• All commands are controlled by touch screen. Also, 

all data are easily monitored on the screen by both 

the rolling bar and number. 

• The data are voltage, current and temperature. 

 

The Arduino UNO performed CAN bus 

communication using the CAN bus shield. The CAN 

bus shield uses the MCP2515 CAN bus controller 

coupled with a Serial Peripheral Interface (SPI) and a 

MCP2551 CAN bus transceiver. A total of 2 Arduino 

UNO was coupled with 2 CAN bus shield and 2 TFT 

Touch Screen to form the CAN bus network topology 

comprising of Master/Host and Peripheral/Slave CAN 

bus nodes. The master node is used to simulate the 

microprocessor GR712, and the slave node is used to 

simulate the Power Conversion Card and the Motor 

controller Cards. Based on the design of the CAN 2.0 

data frame, the system was working well. The Slave 

node is used to simulate to generate the signals for the 

voltage, current and temperature as the power card. The 

master node with the Touch Screen is used to simulate 

to monitor and control the slave node as the 

microprocessor.  

 

 
Figure 10: The interface of 2 TFT Touch Screen of 

Computer card (master) and Power Card (slave) 

7. Latency 

As shown on table 8, it is important to consider the 

latency of our system.  Latency is dominated by the 

microprocessor, CAN controller, CAN transceiver, and 

the bit stuffing.  These factors are beyond the bandwidth 

of the physical layer and contribute to effective 

throughput of the system.   

▪ The latency of the microprocessor (propagation 

latency) and refers to the time to process the last 

message and start another one.  This time depends 

on the speed of the microprocessor and the 

implementation code. This latency can be reduced 

by using a high-speed processor, a Field 

Programmable Gate Arrays (FPGA), and a Direct 

Memory Access (DMA) engine. 

▪ The latency of the CAN controller and CAN 

transceiver stems from hardware delays. Therefore, 

we can’t reduce it on Arduino. However, the 

GR712, which we are considering using on flight, 

has a better CAN controller and CAN transceiver, 

so its latency is significantly lesser. The details are 

shown in table 7. 
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Table 7: Latency of the CAN controller and 

transceiver 

 
Table 7: Latency of the CAN controller and transceiver 

▪ The latency of the bit stuffing: CAN protocol 

requires a bit of the opposite polarity to be inserted 

into the message by the CAN controller whenever 

5 continuous bits of the same polarity are 

transmitted to ensure enough transitions to maintain 

synchronization [9]. The bit stuffing increases the 

maximum transmission time of CAN messages by 

nearly 20% in the worst case, as shown in table 8.  

The time taken for bit stuffing is dependent on the 

data. 

Table 8: Measure latency of the Arduino 

 

8. Future work 

In the future we intend to design and develop the 

CAN bus using CAN FD because of its advances from 

standard CAN.  These advances include a bigger data 

frame, and higher speed. 

- Big data frame: With the increased data frame size of 

64 bytes per data frame, we can reduce the overhead by 

transferring all of our telemetry in one message.  With 

64 data frame, 1 CAN FD message can include all the 

data for 1 motor card (telemetry from 3 motors). 

- Higher Speed: The speed of CAN FD can go up to 

12Mb/s.  This is 10 times faster than Standard CAN.  

With the higher speed, CAN FD can reduce 

transmission time. Therefore, the bus will have more 

free time and allow more active motor controllers to 

communicate over a single bus. 

9. Conclusion 

Our CAN bus simulation using Arduinos and CAN 

Bus Shields is similar to the actual CAN bus network 

control process on the proposed Europa Lander. This 

method provides us a means of simulating the CAN bus 

enough to assess its applicability to Europa Lander.  

This system allowed us to easily change simulation 

parameters, and measure system throughput and 

latency.   We found the Arduino simulation to have  

high latency when compared to our flight GR712 

processor.  This is due to slower microprocessor and 

non-flight like CAN bus shield..  

In this paper we looked at Standard CAN and CAN 

FD. We showed that Standard CAN bus (CAN2.0A) 

would not work as initially as required.  The bus was 

not able to keep up with 512hz messages required to 

close the motor control loops. However, in the future, 

we will be closing these loops within the FPGA which 

reducing the bandwidth requirements for the system. In 

that case, Standard CAN will work for us.  

10. Acknowledgement 

This research was carried out at the Jet Propulsion 

Laboratory, California Institute of Technology, 

under a contract with the National Aeronautics and 

Space Administration (80NM0018D0004). 
 

11. References 

1. Europa Lander Mission Concept Overview. (PDF) 

Grace Tan-Wang, Steve Sell. Jet Propulsion 

Laboratory, NASA. AbSciCon2019, Bellevue, WA 

- June 26, 2019. 

2. G. Bolotin, D. Hunter, D. Sheldon, Y. He and D. 

Foor, "Compact low power avionics for the Europa 

Lander concept and other missions to ocean 

worlds," 2018 IEEE Aerospace Conference, Big 

Sky, MT, 2018, pp. 1-11, doi: 

10.1109/AERO.2018.8396418. 

3. Y. Lv, W. Tian and S. Yin, "Design and 

Confirmation of a CAN bus Controller Model with 

Simple User Interface," 2015 Fifth International 

Conference on Instrumentation and Measurement, 

Computer, Communication and Control (IMCCC), 

Qinhuangdao, 2015, pp. 640-644, doi: 

10.1109/IMCCC.2015.140. 

4. Anthony, P.L, H.B Crawley, P.-A Fischer, R.L 

Mckay, and W.T Meyer. "CANbus and 

Microcontroller Use in the BaBar Detector at 

SLAC." 1999 IEEE Conference on Real-Time 

Computer Applications in Nuclear Particle and 

Plasma Physics. 11th IEEE NPSS Real Time 

Conference. Conference Record (Cat. 

No.99EX295) 47 (1999): 260-63. Web. 

5. Corrigan, S., 2016. Introduction to The Controller 

Area Network (CAN). [pdf] Texas Instrument. 

Available at: <https://www.ti.com/lit/an/sloa101b/ 

Platform

Part CAN Controller CAN Transceiver CAN Controller CAN Transceiver

Chip name
MCP2515 MCP2551 SJA1000 UT64CAN333x

Total delay for 

input and 

output 200-2100ns 1240ns + 5us 40ns 745ns + 1.5us

Arduino GR712

Unit in Microsecond (µs)

Speed of CAN BUS (kbps) 1000kbps 500kbps 1000kbps 500kbps 1000kbps 500kbps

Sending Poke msg - No data 156 208 44 88 112 120

Sending CAN msg with "AA" 8 

bytes data - prevent stuff bit
228 336 108 216 120 120

Sending CAN msg with " FF" 8 

bytes data - expected stuff bit
256 364 120 240 136 124

Closing loop 1 - 1 poke and 1 

response "AA"
476 620 152 304 324 316

Closing loop 1 - 1 poke and 1 

response "FF"
492 664 164 328 328 336

Closing loop 3 - 1 poke 3 

response
964 1324 402 804 562 520

Measured with Arduino
Theory - Ideal - no 

process
Latency



© 2020. California Institute of Technology. Government sponsorship acknowledged 8 
 

sloa101b.pdf?ts=1597936955031> [Accessed 20 

August 2020]. 

6. J. M. Giron-Sierra, C. Insaurralde, M. Seminario, J. 

F. Jiménez and P. Klose, "CANbus-based 

distributed fuel system with smart components," 

in IEEE Transactions on Aerospace and Electronic 

Systems, vol. 44, no. 3, pp. 897-912, July 2008, doi: 

10.1109/TAES.2008.4655351. 

7. Y. Xie, P. Huang, W. Liang and Y. He, 

"Comparison between CAN and CAN FD: A 

Quantified Approach," 2017 IEEE International 

Symposium on Parallel and Distributed 

Processing with Applications and 2017 IEEE 

International Conference on Ubiquitous 

Computing and Communications (ISPA/IUCC), 

Guangzhou, 2017, pp. 1399-1403, doi: 

10.1109/ISPA/IUCC.2017.00212.  

8. N. Yee, P. Chand and S. Foehst, "Student Designed 

CANBus Simulator Used as Teaching Aid in 

Autotronics Course," 2017 4th Asia-Pacific World 

Congress on Computer Science and Engineering 

(APWC on CSE), Nadi, 2017, pp. 82-87, doi: 

10.1109/APWConCSE.2017.00023. 

9. J. M. Giron-Sierra, C. Insaurralde, M. Seminario 

and J. F. Jimenez, "Distributed control system for 

fuel management using CANbus," The 23rd Digital 

Avionics Systems Conference (IEEE Cat. 

No.04CH37576), Salt Lake City, UT, USA, 2004, 

pp. 8.D.2-8.1, doi: 10.1109/DASC.2004.1390770. 

10. Mary, G. I., Alex, Z. C., &amp; Jenkins, L. (2013). 

Response Time Analysis of Messages in Controller 

Area Network: A Review. Journal of Computer 

Networks and Communications, 2013, 1-11. 

doi:10.1155/2013/148015 

Biography 
Hieu Tran is currently a full-time 

intern in Summer 2020 and part-

time in Fall 2020 at NASA Jet 

Propulsion Laboratory. He will be 

graduating from California 

Polytechnic University, Pomona 

in December 2020 with a  B.S in 

Electrical Engineering.  Upon graduation with 

GPA 3.96, his dream is to be a member of the JPL 

motor control team. Being named on Dean’s 

Honor List and President’s Honor list in 2018, 

2019, 2020 and being selected for Chevron 

Scholarship, Edison Scholarship, Robert R 

Sprague Scholarship, and so on while studying at 

Cal Poly Pomona. 
 

Gary Bolotin received a B.S. in 

Engineering from Illinois Institute 

of Technology in 1984 and a M.S. 

in Engineering from University of 

Illinois at Urbana Champaign in 

1985. He has been with JPL for 

more than 34 years. He is currently 

the lead for the Europa Lander 

Motor Controller.  He has also managed 

engineering teams as both teams leads and line 

manager at the section and group level.  

 

Ben Cheng holds a B.S. in 

Electrical Engineering from 

California Polytechnic University, 

Pomona. He is currently working 

at NASA Jet Propulsion 

Laboratory as a member of the 

Motor Control Card Development 

Team since 2018. Ben is supporting the test and 

development of the Europa Lander motor control 

modules and board designs. Prior to joining JPL, 

he was the Vice President and a Board of Director 

for MAG Laboratory (a makerspace) and the head 

of multiple Robotics-centered student 

organizations and projects.  

 



© 2020. California Institute of Technology. Government sponsorship acknowledged 9 
 

Allen Sirota is the technical 

group supervisor of the Robotic 

Actuation and Sensing Group at 

NASA Jet Propulsion 

Laboratory, California Institute 

of Technology, where he has 

been since 1983. He received his 

B.S. degree in Electronics Engineering from the 

University of California, Los Angeles, in 1976. 

Allen Sirota received the 1997 NASA Exceptional 

Engineering Achievement Medal for his 

contributions to the Mars Pathfinder Sojourner 

Rover mission. 

 

Malcolm Lias holds a B. S. in 

Electrical Engineering from 

Rochester Institute of Technology.   

He is currently developing Motor 

Control Card for Europa Lander at 

Jet Propulsion Laboratory (JPL). 

Testing and documenting the Distributed Motor 

Control Multi-Chip Module for use on the Europa 

Lander.  Prior to joining JPL, Malcom worked for 

Word Inc where he was responsible for design, 

product support, and testing of control electronics 

for missiles, smart bombs, and aircraft. 

 

 

 

 

 

 

 

 

 

 

 

 

 


